Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions.
نویسندگان
چکیده
Dysfunction of gap junctions (GJs) caused by mutations in connexin26 (Cx26) and Cx30 accounts for nearly half of all cases of hereditary nonsyndromic deafness cases. Although it is widely held that GJs connecting supporting cells in the organ of Corti mainly provide ionic pathways for rapid removal of K+ around the base of hair cells, the function of GJs in the cochlea remains unknown. Here we show that GJs were not assembled in the supporting cells of the organ of Corti until 3 days after birth in mice and then gradually matured to connect supporting cells before the onset of hearing. In organotypic cochlear cultures that were confirmed to express GJs, GJs mediated the propagation of intracellular Ca2+ concentration waves in supporting cells by allowing intercellular diffusion of inositol 1,4,5-trisphosphate. We found that a subset of structurally mild Cx26 mutations located at the second transmembrane region (V84L, V95M, and A88S) and a Cx30 mutation located at the first cytoplasmic segment (T5M) specifically affect the intercellular exchange of larger molecules but leave the ionic permeability intact. Our results indicated that Cx26 and Cx30 mutations that are linked to sensorineural deafness retained ionic coupling but were deficient in biochemical permeability. Therefore, GJ-mediated intercellular exchange of biochemically important molecules is required for normal cochlear functions.
منابع مشابه
Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts.
The importance of connexins (Cxs) in cochlear functions has been demonstrated by the finding that mutations in Cx genes cause a large proportion of sensorineural hearing loss cases. However, it is still unclear how Cxs contribute to the cochlear function. Recent data (33) obtained from Cx30 knockout mice showing that a reduction of Cx diversity in assembling gap junctions is sufficient to cause...
متن کاملGap Junction Mediated Intercellular Metabolite Transfer in the Cochlea Is Compromised in Connexin30 Null Mice
Connexin26 (Cx26) and connexin30 (Cx30) are two major protein subunits that co-assemble to form gap junctions (GJs) in the cochlea. Mutations in either one of them are the major cause of non-syndromic prelingual deafness in humans. Because the mechanisms of cochlear pathogenesis caused by Cx mutations are unclear, we investigated effects of Cx30 null mutation on GJ-mediated ionic and metabolic ...
متن کاملConnexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development
Organ development requires well-established intercellular communication to coordinate cell proliferations and differentiations. MicroRNAs (miRNAs) are small, non-coding RNAs that can broadly regulate gene expression and play a critical role in the organ development. In this study, we found that miRNAs could pass through gap junctions between native cochlear supporting cells to play a role in th...
متن کاملDeficiency of Transcription Factor Brn4 Disrupts Cochlear Gap Junction Plaques in a Model of DFN3 Non-Syndromic Deafness
Brn4, which encodes a POU transcription factor, is the gene responsible for DFN3, an X chromosome-linked, non-syndromic type of hearing loss. Brn4-deficient mice have a low endocochlear potential (EP), hearing loss, and ultrastructural alterations in spiral ligament fibrocytes, however the molecular pathology through which Brn4 deficiency causes low EP is still unclear. Mutations in the Gjb2 an...
متن کاملCompartmentalized and signal-selective gap junctional coupling in the hearing cochlea.
Gap junctional intercellular communication (GJIC) plays a major role in cochlear function. Recent evidence suggests that connexin 26 (Cx26) and Cx30 are the major constituent proteins of cochlear gap junction channels, possibly in a unique heteromeric configuration. We investigated the functional and structural properties of native cochlear gap junctions in rats, from birth to the onset of hear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 42 شماره
صفحات -
تاریخ انتشار 2005